An Implementation Study of the AODV Routing Protocol

Elizabeth M. Royer
Dept. of Electrical & Computer Engineering
University of California, Santa Barbara
Santa Barbara, CA 93106
eroyer@alpha.ece.ucsb.edu

Abstract - The Ad hoc On-Demand Distance Vector (A0DV) routing proto-
col is designed for use in ad hoc mobile ks. B of the difficulty of
testing an ad hoc routing protocol in a real-world environment, a simulation
was first created so that the protocol design could be tested in a variety of sce-
narios. Once simulation of the protocol was nearly complete, the simulati
was used as the basis for an implementation in the Linux operating system.
In the course of ting the simulation into an imple ion, certain
modifications were needed in AODV and the Linux kernel due to both sim-
plifications made in the simulation of AODV and to incompatibilities of the
Linux kernel and the IP-layer to routing in a mobile environment. This pa-
per details many of the changes that were necessary during the development
of the implementation.

I. INTRODUCTION AND MOTIVATION

Mobile wireless devices are rapidly gaining popularity due
to recent improvements in the portability and power of these
products. There is a growing need for communication proto-
cols which allow users of these devices to communicate over
wireless links. To allow such on-the-fly formation of networks,
the Ad hoc On-Demand Distance Vector (AODV) routing pro-
tocol has been developed [5], [6], [7]. AODV has been de-
signed for use in ad hoc mobile networks. It allows users to
find and maintain routes to other users in the network when-
ever such routes are needed.

Testing mobile wireless protocols in a real-world environ-
ment presents numerous difficulties. These difficulties include
creating repeatable scenarios with tens, hundreds, or even
thousands of mobile nodes. Creating multiple scenarios with
only small variances is also quite challenging. Because of these
difficulties, simulations of AODV have been created to test the
protocol in a variety of repeatable scenarios {5], [7]. However,
while simulating a protocol can aid in the basic design and test-
ing of the protocol, certain assumptions and simplifications can
be made in a simulation that are not valid in a real-world sce-
nario, Hence, it is important to implement the protocol, once
the simulation is complete.

This paper describes recent work in the development of an
implementation of the AODV protocol. While the implemen-
tation is still in the process of completion, certain changes have
already been necessary to both the protocol and the kernel
in order to allow AODV to operate correctly. Many of these

0-7803-6596-8/00/$10.00 © 2000 IEEE

Charles E. Perkins
Communications System Laboratory
Nokia Research Center
Mountain View, CA 94043
cperkins@iprg.nokia.com

User Space
Socket Layer f-ocooveeeeiiniii

Link Layer
Physical Channel

Fig. 1. Implementation Structure.

changes are notable because they have resulted in modifica-
tions which have been incorporated into the AODV Internet
Draft [6]. Others are useful information for researchers en-
deavoring their own protocol implementations.

To minimize changes to the kernel, AODV was implemented
as a daemon in user space. Other implementations [1], [3] have
selected this approach as well. Figure 1 illustrates the logical
structure of the implementation, highlighting where the modi-
fications occurred. We chose to implement AODV in the Linux
kernel because of the inherent mobility and open-source char-
acteristics of Linux. The alternative to implementing a rout-
ing protocol in user space is to incorporate the protocol into
the existing kernel, as in [4]. Incorporating the protocol into
the kernel has the advantages that it will operate faster, and a
mechanism is not required for transportation between kernel
and user space. Kernel implementations naturally have easier
access to all header data at the network (IP) layer and below,
making it much easier to utilize header fields and options when
making protocol decisions. For example, this would simplify
the use of source routes in protocol operations. However, this
method also has the negative effects of making the protocol
less portable, making it more difficult to maintain, reducing the
protocol functionality, and impairing memory management.

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of AODV’s unicast and multicast
operation. Section III-A details some of the modifications that

1003

Destination

Destination

Source

Source
(a) RREQ Broadcast (b) RREP Propagation and
' Subsequent Route

Fig. 2. Route Discovery Cycle.

were necessary to the AODV protocol, while Section III-B de-
scribes modifications needed in the Linux kernel. Plans for
future work in the AODV implementation are discussed in Sec-
tion IV. Finally, Section V concludes the paper.

II. OVERVIEW OF AODV

The Ad hoc On-Demand Distance Vector (AODV) routing
protocol provides unicast, broadcast, and multicast communi-
cation in ad hoc mobile networks [5], [6], [7]. AODV initiates
route discovery whenever a route is needed by a source node,
or whenever a node wishes to join a multicast group. Routes
are maintained as long as they are needed by the source node or
as long as the multicast group exists, and the routes are always
loop-free through the use of sequence numbers. AODV nodes
maintain a route table in which next hop routing information
for destination nodes is stored.

A. Unicast

Route discovery in AODV follows a route request/route re-
ply query cycle. A source node in need of a route broadcasts a
Route Request (RREQ) packet (Fig. 2(a)) across the network.
Any node with a current route to the destination, including the
destination itself, can respond to the RREQ by unicasting a

_ Route Reply (RREP) to the source node. Once the source node
receives the RREP, it can begin sending data packets along this
route to the destination. Fig. 2(b) illustrates the propagation of
RREP messages back to the source node, and the subsequent
route selected by the source node to the destination.

Because nodes are moving, link breaks are likely to occur.
‘When a link break in an active route occurs, the node upstream
of the break broadcasts a Route Error (RERR) message con-
taining a list of all the destinations which are now unreachable
due to the loss of the link. The RERR is propagated back to
the source node. Once the source node receives this message,
it may reinitiate route discovery if it still needs the route.

B. Multicast

As network nodes join a multicast group, a bi-directional
shared tree composed of the multicast group members and
intermediary nodes needed to connect the group members is
created. Each multicast group has associated with it a group
leader. The primary function of the group leader is to maintain
and disseminate the multicast group sequence number. This
sequence number is used in maintaining freshness of routing
information for the multicast group.

A node wishing to join a multicast group broadcasts a RREQ
message with the join flag set. Any node which is a member
of the multicast tree can respond to this message by unicasting
a RREP back to the originator of the RREQ. The node join-
ing the group waits a discovery period, during which it collects
RREPs. Any node forwarding a RREP must also keep track
of its best route to the multicast tree. At the end of the dis-
covery period, the requesting node selects the shortest route to
the multicast tree, and unicasts the next hop along this route
a Multicast Activation (MACT) message. When the next hop
receives this message, it activates the link in its multicast route
table. If this node is already a tree member, the new tree branch
is finalized. Otherwise, the next hop in turn unicasts a MACT
message to the neighbor it has selected as its next hop towards
the multicast group tree. Processing continues in this manner
until a node that was already a member of the multicast tree is
reached and the addition of the tree branch is complete. Further
details about AODV multicast can be found in [7].

II1. MODIFICATIONS

AODV has been implemented as a routing daemon in user
space. The daemon communicates with the Linux kernel
through the use of sockets. At initialization, AODV opens a
UDP socket to the kernel. This socket is used for both the
transmission and reception of AODV control messages. AODV
has been issued port number 654, and hence binds to this port
when opening the socket. Other channels of communication
include an IGMP socket for multicast, and a net1ink socket
for routing table updates. These sockets are described further
in the following sections.

During the development of the AODV implementation,
many situations arose which required modifications to either
the AODV protocol or the Linux kernel. Some of the changes
were necessary due to simplifications made when simulating
AODV, while others were needed because of incompatibilities
between AODV and the Linux kernel. The following sections
detail many of the modifications that were needed in the course
of the implementation development. :

1004

Gratuitous

Fig. 3. Gratuitous RREPs.

A. Protocol Modifications

A.1 The Route Reply

One of the most basic changes made to AODV was the way
in which RREP packets are forwarded. When a node receives a
RREQ, it replies if it either is the destination, or if it has a cur-
rent route to the destination. In the simulation, RREPs were
originally unicast from the responding node to the source. As
the RREP was propagated, intermediate nodes updated their
route tables to include a route to the destination. In the imple-
mentation, however, this does not work, because if the RREP
is unicast from the responding node to the source, the interme-
diate nodes use IP forwarding and do not process the packet.
Hence the protocol needed to be changed so that RREPs are
unicast on a hop-by-hop basis. Additionally, a Source IP Ad-
dress field was added to the RREP so that the ultimate destina-
tion of the RREP would be retained.

Another modification was made due to a discovery resulting
from an implementation by Dan Ouchterlony et. al. [3]. When
an intermediate node sends a reply to the source, the destina-
tion does not learn of that route to the source node because
it has not received the route request. If all the route requests
are answered by intermediate nodes and consequently the des-
tination never receives a copy of the RREQ, it will never learn
of a route to the source node. This can be detrimental if the
source node wishes to establish a TCP connection. In order
that the destination learns of routes to the source, a modifica-
tion to AODV was made so that intermediate nodes respond-
ing to RREQs by unicasting a RREP to the source node also
send a gratuitous RREP to the destination informing it of the
new route. The intermediate node places the destination IP ad-
dress in the Source IP Address field of the RREP, and places
the source IP address in the Destination IP Address field, since
this is the node for which the route is offered. The intermedi-
ate node enters its distance from the source in the HopCount
field, and then unicasts this RREP to the destination. When the
destination receives the RREP, it will know of a route to the
source. Figure 3 illustrates an example of this process.

In order to reduce the additional overhead incurred by the
gratuitous RREP, we have added a Grat RREP flag to the
RREQ. The source sets this flag if the session is going to be
run over TCP, or if the destination should receive the gratuitous
RREP for any other reason. Otherwise, it leaves the flag unset.

Nodes receiving the RREQ and responding with a RREP only
transmit the gratuitous RREP to the destination if this flag is
set.

A.2 The DELETE_PERIOD

When a node reboots, it loses all of its routing information,
including the value of its sequence number. In the formal ver-
ification of AODV done by Bhargavan et. al. [2], it was found
that routing lnops could result after a node reboots because
neighboring nodes may still have the rebooted node as a next
hop for one or more destinations. If the rebooted node attempts
discovery for one of those destinations, the neighboring nodes
may reply, and hence a route will be created. To prevent this
situation, each node waits for DELETE_PERIOD after reboot-
ing before it responds to any routing messages. If it receives
a data packet during this time, it sends a RERR for that desti-
nation, since it no longer has the route. Additionally, it resets
the waiting timer to the current time plus DELETE_PERIOD
to ensure that all routes with it as a next hop expire.

A.3 Route Tables

The AODV routing daemon communicates changes to the
IP route table through the use of a net1link socket. When-
ever AODV has a route addition, modification, or deletion, it
transmits a message to IP through this socket and the route is
updated accordingly.

To prevent the premature deletion of routes in the kernel
routing table, AODV’s route table maintenance was altered to
include a periodic refresh of the kernel route table entries. This
was easily accomplished through the use of a periodic timer.
When the timer expires, AODV sends a message to IP on the
netlink socket telling it to update, or refresh, the route.

A.4 Multicast

When an application wishes to join a multicast group, it
sends an IGMP membership report containing the address
of group. Because of the goal to minimize changes to the
kernel, we wanted to leave this functionality intact. Hence,
AODV was modified so that it initializes an IGMP socket
and then listens to the messages transmitted on this socket.
An application wishing to join a multicast group transmits an
IGMP_MEMBERSHIP_REPORT on the IGMP socket in order
to request a nearby router to join the group. When AODV de-
tects a membership report from its host listing a new multicast
group, it initiates route discovery for that group. Similarly, an
application requesting to leave a multicast group transmits an
IGMP_LEAVE_GROUP message. When AODV detects this
message transmitted by its host on the socket, it initiates the
process whereby it leaves the multicast group.

The IGMP socket is also used for multicast route table up-
dates. When a node either becomes a member of the multicast
tree or learns of a route to that tree, AODV updates the kernel’s

1005

 Fig. 4. Example Multicast Tree.

multicast route table through the use of the MRT_ADD_MFC
socket option. AODV only issues this command once a MACT
message activating the route has been received. Likewise,
when a node leaves the multicast tree or when its route to
the tree expires, a MRT_DEL_MFC command is issued on the
IGMP socket to invalidate this multicast table entry.

Multicast route table entries in the kernel must be periodi-
cally refreshed; otherwise, they expire and are deleted. AODV
maintains a periodic timer for refreshing multicast route table
entries. This refresh is also accomplished through the use of
the IGMP socket.

As nodes join a multicast group, a bi-directional shared tree
is created which connects the multicast group members. When
a node on the multicast tree receives a data packet destined for
the multicast group, it processes the packet if it is a multicast
group member. It then rebroadcasts the packet, regardless of
whether it is a group member or just a router on the tree. The
destination address of the data packet is the multicast group
address. In the simulator version of AODV, when a node re-
ceives a multicast data packet, it only processes the packet if
the packet arrives from one of its next hops. In the course of
the implementation development, however, we realized a sit-
uation such as the one depicted in Figure 4 can arise. In the
figure, the solid arrows indicate multicast tree links. Node E
is connected to the multicast tree through node C. However,
suppose node E is also within the transmission radius of node
B, another node on the tree. When node B transmits multi-
cast data packets, both nodes C and E receive them. We have
modified the AODV protocol to enable multicast tree nodes to
process multicast data packets if they are a member of the mul-
ticast group, regardless of from whom they receive the packet.
Hence, node E processes data packets it receives from node B
or C. In this way, the multicast tree is used for ensuring that
multicast group members are connected, but this increase in
redundancy leads to a greater number of multicast data packets
successfully delivered to the multicast group members. Loop-
ing is prevented through the use of the IP /dent header field, as
described in Section III-B.

AODV had originally been designed so that there was a dif-
ference in operation between a node wanting to join a multi-
cast group, and a node needing to find a route to the multicast
group for the transmission of data packets to that group. In the

former scenario, a node joining the group waits the full route
discovery period after broadcasting a RREQ to receive RREPs
from tree members. At the end of this discovery period, the
node unicasts a MACT message to its selected next hop, and
the branch is added on to the tree. On the other hand, when a
node only needs a route to the tree but does not actually want
to join the group, it broadcasts a RREQ and waits for reception
of a RREP. After it receives the first RREP, it begins using that
route (as in unicast AODV). If it later receives a better route, it
then updates its routing table entry.

While implementing the protocol, we realized that this ap-
proach will not work for the case when the node is just finding
a route to the group. Because multicast traffic is by nature
broadcast locally, neighboring nodes which forward a RREP
to the source node will have no way of knowing whether they
are selected as next hops for forwarding the multicast data to
the multicast tree. Hence, when the source broadcasts the data,
multiple neighboring nodes could potentially rebroadcast the
packet, resulting in an inefficient use of the available band-
width. We thus modified AODV so that when a node is dis-
covering a route to the multicast group, it must wait the full
discovery period, regardless of whether or not it wishes to join
the group. At the end of this discovery period, the node uni-
casts a MACT message to its selected next hop. A join flag
was added to the MACT message so that the node can in-
dicate whether it is actually joining the multicast tree. Only
nodes that receive this MACT message may rebroadcast mul-
ticast data packets. This enables unnecessary broadcasts to be
suppressed, and bandwidth is more efficiently utilized.

A.5 Interfaces

Multi-homed devices were not originally taken into consid-
eration in the design of the protocol. It was implicitly as-
sumed that AODV would operate over single interface radios.
However, because AODV should also operate smoothly over
wired networks, and because it is likely that AODV will also
be used with multi-homed radios, the consideration of inter-
faces needed to be incorporated into the protocol design.

When a node receives a RREQ, it needs to know upon which
interface the packet arrived so that it will later know which in-
terface to use to reach the source. Similarly, when a node re-
ceives a RREP, the interface upon which the RREP arrived is
needed so that the destination can later be reached. The same
holds true for RERR and MACT messages. If a node has multi-
ple interfaces, it is not necessary that a RERR be broadcast out
of each of its interfaces; the RERR should only be transmitted
on those interfaces that have a neighbor which uses the route.
To enable AODV to maintain an association between destina-
tions and outgoing interfaces, an interface field was added
to routing table entries.

1006

B. Kernel Modifications

B.1 IP Routing

When a packet arrives at a node’s IP-layer from the applica-
tion layer, IP checks whether it has a route to the destination
by consulting its routing table. If it has either a route or a
default router, it forwards the packet. If neither of these ex-
ists, IP informs the application that a route does not exist, and
the session is aborted. In ad hoc routing, default routes typ-
ically do not exist, except possibly for specific connections
to an established infrastructure. Often, due to node mobility,
and especially with on-demand protocols, a valid route is not
known for a given destination. Instead of notifying the appli-
cation, IP must be changed to notify the routing daemon that a
route needs to be found for the destination. Linux’s net1link
socket mechanism can be utilized so that IP sends a message to
the AODV daemon, informing it to initiate route discovery for
the destination. This prevents the session from aborting every
time a route is not known.

We have designed a mechanism through which IP may no-
tify AODV of the need to initiate route discovery. Through the
creation of a new netlink socket type, NETLINK_AODV,
AODV and IP can establish a channel through which these no-
tifications are sent. The socket is initialized by AODV, and the
only traffic sent on this socket are route discovery notifications
from IP to the AODV daemon. IP informs AODV of the desti-
nation IP address and port number of the application which has
initiated the session. In the event that AODV is unable to find
a route to this destination, it can use the port number to notify
the application that the session should be aborted.

To enable the operation of multicast and broadcast and to
prevent routing loops in these communication forms, the Ident
IP header field has been adopted for use as a sequence num-
ber for data packets. Sources of multicast or broadcast data
packets maintain their own monotonically increasing sequence
number for the Ident field. Each time a source initiates a new
multicast or broadcast packet, it increments the value of this
counter and records this value in the /dent header field. When
a node first receives one of these data packets, it temporarily
buffers the Ident field/Source IP Address combination. If it re-
ceives another packet with this same combination, it silently
discards the packet and does not process it further.

B.2 Route Tables

AODV maintains its own route table of destinations for
which it has routes. Each route table entry has associated with
it a Lifetime field. When an entry’s lifetime expires, that en-
try is invalidated. Each time a route to a destination is used,
the lifetime associated with that route is updated so that the
route table entry is not prematurely deleted. Because IP is re-
sponsible for forwarding data packets, however, AODV does
not know when route entries are used. Hence it can not accu-
rately use this feature within the routing daemon. To enable

this functionality of AODV to be maintained, the kernel can
be modified so that IP maintains a structure parallel to the IP
Route table in which it stores a Last Use field.

Each time a route table entry is used to transmit a packet,
IP updates the last use to be the current time. When a route
table entry in AODV expires, before deleting the route AODV
queries IP for the last use value of that routing table entry. If
the route has been used within the previous lifetime period, the
route should not be deleted. Instead, a new route timer is set
for the time remaining until the expiration of the route table

entry.

B.3 Data Packet Buffering

When an application wants to send a data packet to a des-
tination but a route is not available, AODV initiates a route
discovery operation. In the meantime, the packet has to be ei-
ther dropped, or else stored for further processing. While IP
is known to be a best-effort protocol, and higher layer proto-
cols are often designed to recover from packet loss, it is still a
good idea to avoid systemic problems that lead to almost cer-
tain losses.

In existing IP implementations, there are no facilities for
saving these packets, so we have designed a new method for
avoiding packet loss during route acquisition. This works as
follows:

« IP determines that no route is available for delivery of the
packet. :

o IP signals AODV on the net1link socket that a route is
required. ' ’

o IP builds a dummy route table entry for the expected route,
with a relatively short expiration time.

o IP queues the packet in a simple linked list referenced
from the dummy route table entry.

« Ifno route is found, the dummy route table entry expires.

¢ Otherwise, when AODV installs the route, the dummy
route table entry is updated to point to the actual next hop.

« When the route table entry is updated with the valid route
‘information, the queued packets are delivered.

The dummy route table entry referred to above can be an
entry with either an invalid next hop field or a specific “in-
valid” flag. If IP receives another data packet before the route
table for the intended destination has been updated with valid
path information, then the new data packet can be stored in the
queue to await future delivery. '

.With this strategy, there may be time-critical packets that are
delivered late instead of dropped. We have not yet determined a
useful solution to this problem, but typically the receiving end
will discard stale data anyway according to some application-
level sequence numbering scheme.

1007

IV. FUTURE WORK

We intend to finish the Linux AODV implementa-
tion and make it available at the AODV web site
(http://alpha.ece.ucsb.edu/~eroyer/aodv.html). We also want
to make our netlink modifications fit better with the in-
tended overall (inferred) operation of the netlink facility in
Linux. .

We also would like to apply the lessons we have learned
with Linux to produce a FreeBSD implementation. Since
netlink is not available with FreeBSD, we are likely to
design a special device driver interface (/dev/aodv) with new
ioctl()s replacing the Linux netlink functions. The basic
control flow, however, should otherwise remain identical. It
would be nice to be able to produce a Windows implementa-
tion, but so far we are hampered by the unavailability of source
code or documented interfaces into the main Windows protocol
stack.

We also intend to upgrade our simulations with the new fea-
tures motivated by the implementation lessons described in this
paper. Then, it should be possible to run the full implementa-
tion on networks containing a large number of simulated ad
hoc nodes along with the nodes running the actual AODV im-
plementation. This could give us valuable information towards
selecting realistic and optimal values for the protocol parame-
ters needed for any implementation of AODV.

The method by which packets are stored during route dis-
covery needs further improvements. We might find that it is
possible to store pending packets in the memory of the AODV
daemon. We might be able to devise application profiles that
help to determine how long a packet should be stored before
it goes stale and has to be discarded. Local feedback to the
application is also possible in conjunction with such discard-
ing operations. We may also determine that almost identical
buffering operations are needed during any local repair oper-
ations that may be carried out by intermediate routers along
the path from source to destination. Again, any such buffering
either at the source or the intermediate nodes should also be
controllable according to any QoS parameters that have been
associated with the route request.

V. CONCLUSION

Because protocol design is not yet an exact science, design-
ers should take advantage of those tools which may aid them in
validating the operation of their protocols. The use of design
verification tools can aid in the examination of each possible
usage case, and can validate the operation of a protocol in each
of these situations. Because of the difficulty in enumerating
all possible usage cases and node failure scenarios, these tools
should be considered an important part of the protocol design
process.

Implementing a routing protocol is a crucial step in verify-
ing the correct design and operation of the protocol. While
simulation is necessary for ad hoc routing protocols in order
to establish a set of repeatable test scenarios where small vari-
ances can be made, certain assumptions and simplifications are
often made in the simulation which do not hold true in a real
world scenario. Hence it is essential to implement the protocol
in order to ensure no over-simplifications are included in the
final protocol specification.

We have developed an implementation of the AODV routing
protocol based on the simulation of this protocol. In the course
of writing the implementation, some key changes needed to
be made to both the protocol and the Linux kerel to enable
AODV to operate correctly. As AODV continues to be refined,
it is possible that further changes will be required, particu-
larly when QoS operation is implemented. Additionally, tunnel
management may also indicate the need for further modifica-
tions. We look forward to the completion of the implementa-
tion, the design of a testbed in which to test the implementa-
tion, and interoperability testing with other existing implemen-
tations.

ACKNOWLEDGMENT

Thanks to Michael Speer for his help in designing the basic
framework for using IGMP in the ad hoc networking environ-
ment.

References

[1] S. H. Bae, S.-J. Lee, W. Sy, and M. Gerla. The Design, Implementa- -
tion, and Performance Evaluation of the On-Demand Multicast Routing
Protocol in Multihop Wireless Networks. IEEE Network, 14(1):70-77,
January/February 2000.

[2] K.Bhargavan, C. A. Gunter, and D. Obradovic. Fault Origin Adjudication.
Proceedings of the Workshop on Formal Methods in Software Practice,
Portland, OR, August 2000.

[3] F. Lilieblad, O. Mattsson, P. Nylund, D.
lonyy, and A. Roxenhag Personal
http://fl.ssvl.kth.se/~g4/madhoc/docs/techdoc.ps.

[4] D. A. Maltz, J. Broch, and D. B. Johnson. Experiences Designing and
Building a Multi-hop Wireless Ad hoc Testbed. Technical Report CMU,
CMU School of Computer Science.

Ouchter-
Communication,

[5] C.E.Perkins and E. M. Royer. Ad-hoc On-Demand Distance Vector Rout-

ing. Proceedings of the 2™% IEEE Workshop on Mobile Computing Sys-
tems and Applications, pages 90-100, New Orleans, LA, February 1999.

[6] C. E. Perkins, E. M. Royer, and S. R. Das. Ad Hoc On Demand Dis-
tance Vector (AODV) Routing. IETF Internet Draft, draft-ietf-manet-
aodv-05.txt, March 2000. (Work in Progress).

[71 E. M. Royer and C. E. Perkins. Multicast Operation of the Ad-hoc
On-Demand Distance Vector Routing Protocol. Proceedings of the 5t*
ACM/IEEE International Conference on Mobile Computing and Network-
ing (MobiCom), pages 207-218, Seattle, WA, August 1999.

1008

