Example of SIC assembler language program 174

Line source statement
5 COPY START 1000

10 FIRST STL RETADR
15 CLOOP JSUB RDREC

20 LDA LENGTH
25 COMP ZERO

30 JEQ ENDF

35 JSUB WRREC
40 J CLOOP
45 ENDFIL LDA EOF

50 STA BUFFER
55 LDA THREE
60 STA LENGTH
65 JSUB WRREC
70 LDL RETADR

75 RSUB

Example of SIC assembler language program 274

80 EOF BYTE CEOF
85 THREE WORD 3

9 ZERO WORD 0

95 RETADR RESW 1

100 LENGTH RESW 1

105 BUFFER RESB 4096

110 .
115 . SUBROUTINE TO READ RECORD INTO BUFFER
120 . (o PLIFI,'J%,E_J?“‘ %‘}?V%EI&G@U?T&E&)

125 RDREC LDX ZERO
130 LDA ZERO

Example of SIC assembler language program 374

135 RLOOP TD INPUT

140 JEQ RLOOP
145 RD INPUT
150 COMP ZERO
155 JEQ EXIT

160 STCH BUFFER,X
165 TIX MAXLEN
170 JTL ~ RLOOP
175 EXIT STX LENGTH
130 RSUB

185 INPUT BYTE X'F1’
190 MAXLEN WORD 4096

Example of SIC assembler language program 474

195 .

200 . SUBROUTINE TO WRITE RECORD INTO BUFFE
205 .

210 WRREC LDX ZERO

215 WLOOP TD OUTPUT

220 JEQ WLOOP
225 LDCH BUFFER,X
230 WD OUTPUT
235 TIX LENGTH
240 JLT WLOOP
245 RSUB

250 OUTPUT BYTE X035
255 END FIRST

Object code of SIC assembler language program 174
Line Loc Source statement object code

5 COPY START 1000

10 FIRST STL RETADR
15 CLOOP JSUB RDREC
20 LDA LENGTH
25 COMP ZERO

30 JEQ ENDF

35 JSUB WRREC
40 J CLOQOP
45 ENDFIL LDA EOF

50 STA BUFFER
55 LDA THREE
60 STA LENGTH
65 JSUB WRREC
70 LDL RETADR

75 RSUB

Object code of SIC assembler language program 274

80 EOF BYTE CEOF

85 THREE WORD 3

90 ZERO WORD 0

95 RETADR RESW 1

100 LENGTH RESW 1

105 BUFFER RESB 4096

110 :

115 : SUBROUTINE TO HEAD RECORD INTO BUFFER
120 :

125 RECORD LDX ZERO

130 LDA ZERO

Object code of SIC assembler language program

135
140
145
150
155
160
165
170
175
180
185
190

RLOOP TD INPUT

JEQ RLOOP
RD INPUT
COMP ZERO
JEQ EXIT
STCH BUFFER,X
TIX MAXLEN
JTL ~ RLOOP

EXIT STX LENGTH

RSUB

INPUT BYTE X'F1’
MAXLEN WORD 4096

374

Object code of SIC assembler language program 474

195 .

200 . SUBROUTINE TO WRITE RECORD INTO BUFFER
205 .

210 WRREC LDX ZERO

215 WLOOP TD OUTPUT
220 JEQ WLOOP
225 LDCH BUFFER,X
230 WD OUTPUT
235 TIX LENGTH
240 JLT ~ WLOOP
245 RSUB

250 OUTPUT BYTE X'05°

255 END FIRST

Mnemonic Format Opcode Effect Notes
ADD m 3/4 18 A (A)+ (m.m+2)
ADDF m 3/4 58 F &« (F) + (m.m+5) XF
ADDR 11,12 2 90 12 « (r2) +(rl) X
AND m 3/4 40 A (A)& (m.m+2)
CLEAR rl 2 B4 1«0 X
COMP m 3/4 28 (A) : (m..m+2) C
COMPF m 3/4 88 (F) : (m..m+5) XEC
COMPR 1112 2 A0 (rl): (r2) X C
DIV m 3/4 24 A« (A) / (m.m+2)
DIVE m 3/4 64 F & (F) / (m.m+5) XF
DIVR rl,r2 2 9C 2 « (r2) / (r1) X
FIX 1 C4 A+ (F) [convert to integer] XF
FLOAT 1 Co F &« (A) [convert to floating] XF
HIO 1 F4 HaltI/0 channel number (A) P X
Jm 3/4 3C PC ¢+ m
JEQ m 3/4 30 PC « mif CC set to =
JGT m 3/4 34 PC « m if CC setto >
JIT m 3/4 38 PC+—mif CCsetto<
JSUB m 3/4 48 Le(PC); PCem
LDA m 3/4 00 A+ (m.m+2)
LDB m 3/4 68 B « (m..m+2) X
LDCH m 3/4 50 A [rightmost byte] « (m)
LDF m 3/4 70 F & (m..m+5) XF
LDL m 3/4 08 L« (m..m+2)
LDS m 3/4 6C S & (m.m+2) X
LDT m 3/4 74 T & (m..m+2) X
LDX m 3/4 04 X « (m..m+2)
LPS m 3/4 Do Load processor status from PX
information beginning at
address m (see Section 6.2.1)
MUL m 3/4 20 A e (A)* (m.m+2)

Mnemonic Format Opcode Effect Notes

MULF m 3/4 60 F « (F)* (m..m+5) XF

MULR r1,r2 2 98 12 ¢ (£2) * (r1) X

NORM 1 C8 F « (F) [normalized] XF

OR m 3/4 44 A (A) | (m.m+2)

RD m 374 D8 A [rightmost byte] « data P
from device specified by (m)

RMO rl,r2 2 AC 12 = (rl) X

RSUB 3/4 4C PC « (L)

SHIFTL r1n 2 Ad rl e (rl); left circular shift X

n bits. {In assembled
instruction, r2 =n-1}

SHIFTR rln 2 A8 rl « (rl); right shift n bits, X
with vacated bit positions set
equal to leftmost bit of (r1).

{In assembled instruction,
r2 = n-1}
SIO 1 FQ Start 1/O channel number (A); P X
address of channel program
is given by (S)
55K m 3/4 EC Protection key for addressm P X
« (A) (see Section 6.2.4)
STA m 3/4 0C me.m+2 < (A)
STB m 3/4 78 m..m+2 « (B) X
STCH m 3/4 54 m « (A) [rightmost byte]
STF m 3/4 80 m..m+5 « (F) XF
STI m 3/4 D4 Interval Hmer value «— PX
(m..m+2) (see Section 6.2.1)
STL m 3/4 14 m.m+2 « (L)
STS m 3/4 7C m..m+2 & (8) X
STSW m 3/4 E8 m,.m+2 « (SW) P
STT m 3/4 84 m..m+2 « (T) X
STX m 3/4 10 m..m+2 & (X)
SUB m 3/4 1C A (A)- (m.m+2)

SUBF m 3/4 5C F (F) - (m..m+5) X F

Mnemonic Format Opcode Effect Notes

SUBR rl1,r2 2 94 2 « (r2) - (r1) X
SVC n 2 BO Generate SVC interrupt. (In X
assembled instruction, rl = n}

TD m 3/4 EO Test device specified by (m) P C
TIO 1 F8 Test I/Q channel number (A) PX C
TIX m 3/4 2C X=X +1; X (m.m+2) C
TIXR rl 2 B8 Xe(X)+1; (X):(r1) X C
WD m 3/4 DC Device specified by (m) « (A) T

[rightmost byte]

instruction Formats
Format 1 (1 byte):
8
Format 2 (2 bytes):

8 4 4
op r

Format 3 (3 bytes):
6 1111141 12
[TIDERF_ow]

Format 4 (4 bytes);

6 111111 20

i]x!b]pler address]

Addressing Modes

3

[=

The following addressing modes apply to Format 3 and 4 instructions.
Combinations of addressing bits not included in this table are treated as errors
by the machine. In the description of assembler language notation, ¢ indicates
a constant between 0 and 4095 (or @ memory address known to be in this
range); m indicates a memory address or a constant value larger than 4095.
Further information can be found in Section 1.3.2.

The letters in the Notes column have the following meanings:

4 Format 4 instruction
D Direct-addressing instruction
A Assembler selects either program-counter relative or base-relative
mode
5 Compatible with instruction format for standard SIC machine.
Operand value can be between 0 and 32,767 (see Section 1.3.2 for
details).
Assembler Calculation
Addressing Flag bits language of target
type nixbpe notation address TA Operand Notes
Simple 110000 opc disp (TA) D
110001 +op m addr (TA) 4D
110010 op m (PC) + disp (TA) A
110100 op m (B) + disp (TA) A
111000 op ¢,X disp + (X) (TA) D
111001 +op mX addr + (X) (TA) 4D
111010 op mX (PC)+disp+(X) (TA) A
111100 op mX (B)+disp+(X) (TA) A
000--- opm b/p/e/disp (TA) D S
001--- op m,X b/p/e/disp+ (X) (TA) D 8§
Indirect 100000 op ‘@c disp ((TA)) D
100001 +op @m addr (TA)) 4D
100010 op @n (PC)+disp ((TA)) A
100100 op ‘@m (B) + disp ((TA)) A
Immediate 010000 op #c disp TA D
010001 +op #m addr TA 4D
010010 op #m (PC) + disp TA A
010100 op #m (B) + disp TA A

Fig.2.1

Fig.2.4(a)

write line to intermediate file

— Intermediate file

Fig.2.1

if found then Fig.2.4(a)

add 3 {instruction length} to LOCCTR

write line to intermediate file

Intermediate file

LOCCTR=1003

Fig.2.1

Fig.2.4(a)

iIf found then
add 3 {instruction length} to LOCCTR

write line to intermediate file

Intermediate file

Fig.2.1

Fig.2.4(a
If found then g ()
add 3 {instruction length} to LOCCTR

write line to intermediate file

LOCCTR=1009 —

Intermediate file

Fig.2.1

Fig.2.4(a)

else if OPCODE = "'BYTE' then
begin
find length of constant in bytes
add length to LOCCTR
end

write line to intermediate file

LOCCTR=102D

Intermediate file

Function of algorithm for pass_1 of assembler

(1)Assign address to all statements In the
program

(2)Save the values (address) assigned to
all labels

(3)Perform some processing of assembler
directives

5

FIRST STL RETADER
10

VA Intermediate file

if OPCODE ="'START' then
begin

end{if start}
write Header record to obect program
initialize first Text record

Fig2.4(b)

write listing line

HCOPY--00100000107A
1000 COPY START 1000 -

1000 FIRST STL RETADR 141033

Fig2.2

Object Program correspond to Fig 2.2
casel

Line Loc Source statement

) 1000 COPY

Pass 2
SYMTAB
Fig2.4(b) (LOCCTR-

= length

H COPY 0O0107A

Object Program correspond to Fig 2.2
case2

Line Loc Source statement

10 1000 FIRST STL

| N

Pass 2 Instruction Table SYMTAB
Fig2.4(b) (LABEL LOCCTR)

RETADR 1033

—

» 141033

Object Program correspond to Fig 2.2
case3

Line Loc Source statement
80 102A EOF BYTE C' EOF’

// \character

Pass 2 Fig2.4(b)

else if OPCODE = 'BYTE' or "'WORD' then
convert constant to object code

\\\\\\\\\\\-—»454F46

Object Program correspond to Fig 2.2
case4

Line Loc Source statement
85 102D THREE WORD 3

//

Pass 2 Fig2.4(b)

else if OPCODE = 'BYTE' or "'WORD' then
convert constant to object code

\ 000003

Object Program correspond to Fig 2.2
case5

Line Loc Source statement
185 205D INPUT BYTE X'F1’

// hexadecimal

Pass 2 Fig2.4(b)

else if OPCODE = 'BYTE' or "'WORD' then
convert constant to object code

\Fl

Object Program correspond to Fig 2.2
caseb

Line Loc Source statement
190 205 MAXLEN WORD 4096

J—

Pass 2 Fig2.4(b) 4096 = 212

else if OPCODE = 'BYTE' or "'WORD' then
convert constant to object code

\ 12841
001000

Object Program correspond to Fig 2.2
case?

Line Loc Source statement

255 END FIRST
Pass 2 SYMTAB
_ (LABEL LOCCTR)
F1g2.4(b) FIRST 1000

S

> £ 001000

Object Program correspond to Fig 2.2

HCOPY 00100000107A

T 001000 1E 141033 482039 001036 281030 301015 482061
3C1003 00102A 0C1039 00102D

T 00101E 15 0C1036 482061 081033 4C0O000 454F46 000003
000000

T 002039 1E 041030 001030 EO205D 30203F D8205D 281030
302057 549039 2C205E 38203F

T 002057 1C 101036 4C0O000 F1 001000 041030 EO2079 302064
509039 DC2079 2C1036

T 002073 07 382064 4C0O000 05

E 001000 _
Fig 2.3

2.2 Machine-dependent assembler

(1) Addressing mode symbols:
@ : indirect addressing mode
70 J @RETADR
/ X
05 RETADR RESW 1
. Immediate addressing mode
55 LDA #3
+ . extended instruction format
15 CLOOP +JSUB RDREC

2.2 Machine-dependent assembler

(2) Use of reqister-register instructions
Instead of register memory Iinstructions
-> Improve the exaction speed of the
program.

CPU Memory

N -

2.2 Machine-dependent assembler

(3) If neither program-counter relative nor
base relative addressing can be used, then
the 4-byte extended Instruction format
must be used.

15 0006 CLOOP +JSUB RDREC

1036-0009
=102D >1000

125 1036 RDREC CLEAR X

2.2 Machine-dependent assembler

(4) Displacement calculation for program-

counter relative and base addressing
modes:

10 0000 FIRST STL RETADR

Since address (RETADR) =0030 and next address (FIRST)
=0003, we obtain displacement=0030-0003=02D with pc
relative addressing and neither indirect nor immediate

addressing, the object code of this assembly instruction is
17202D

Opcode (STL) nixbpe..
000101 110010 ..
1 7 2

2.2 Machine-dependent assembler

(5) The difference between pc relative
addressing and
IS that the assembler knows what the
contents of the program-counter will be
at execution time but the base register is
under the control of the programmer.

20 000A LDA LENGTH
100 0033 LENGTH RESW 1

2.2 Machine-dependent assembler

(6) The displacement of pc relative mode
IS between -2048 and +2047 but the
displacement of IS
between . For SIC/XE
assembler, it attempt pc relative mode
assembly first.

20 000A LDA LENGTH
100 0033 LENGTH RESW 1

2.2 Machine-dependent assembler

(7) The kind of sharing of the common memory
among programs is called multiprogramming.
An object program that contains the information
necessary to perform address modification is call

a relocatable program.

EX. 15 CLOOP +JSUB RDREC M 000007 05

4B101036 |(CLOOP +JSUB RDREC)

—

>

| :
4B101036 — 4B106036

8410 |(RDREC CLEAR X) 4B106036

B410

T

M 05

Fig 2.7

2.2 Machine-dependent assembler

(8) Modification record:
Col. 1 M

Col. 2-7 Starting location of the address
field to be modified, relative to
the beginning of the program.

Col. 8-9 Length of the address field to be
modified in half-bytes.

15 CLOOP +JSUB RDREC
M 000007 05

(5*4=20 bits)

2.2 Machine-dependent assembler

(9) The Instructions need not be modified:

* the Instruction operand Is not a memory
address.

* the operand Is specified using pc relative
or base relative addressing.

40 CLOOP
160 STCH BUFFER,X

2.2 Machine-dependent assembler

(10) The only parts of the program that
require modification at load time are
those that specify direct address.

15 CLOOP +JSUB RDREC M 000007 05
35 +JSUB WRREC M 000014 05
65 +JSUB WRREC M 000027 05

2.3 Machine-independent
assembler features

(1)Immediate addressing : the operand Is
assembled as part of the machine
Instruction.

Literal addressing : the operand value Is
specified as a constant at some other
memory location.

2.3 Machine-independent
assembler features

(2)LITTAB (literal table):
Pass 1: literal->LITTAB->LTORG->address
Pass 2: literal->LITTAB->address

2.3 Machine-independent
assembler features

(3)Why use EQU?

*1t Is used for improved readability in place
of numeric values.

*1t Is used for defining mnemonic names
for reqisters.

*1t Is used to have the standard register
mnemonic built into the assembler.

2.3 Machine-independent
assembler features

(4)Why use ORG?

*1t assigns values to symbols.

*1t Is used In label definition.

*Restriction: it must have been defined
previously In the program.

2.3 Machine-independent
assembler features

(5)Expressions are classified as either absolute

expressions or relative expressions depending upon

the type of value they produce.

*Absolute expressions: relative terms occur in pairs.

*Relative expressions: the remaining unpaired
relative term must have a positive sign.

*Example:
RETADR(R),BUFFER(R),BUFEND(R),MAXLEN(A).

2.3 Machine-independent
assembler features

(6)Program locks allow the generated
machine instructions and data to appear in
the object program in a different order from
the corresponding source statements.

2.3 Machine-independent
assembler features

(7)The assembler directive USE indicates
which portions of the source program
belong to the various blocks.

2.3 Machine-independent
assembler features

(8)During pass 1, a separate location counter for each
program block and each label in the program is assigned an
address that in relative to the start of the block that contains it.
Block name Block number Address Length
(default) 0 0000 0066

CDATA 1 0066 000B
CBLKS 2 0071 1000
Example:

20 0006 0 LDA LENGTH 032 2?7?77

operand (LENGTH)=0003

start address of program block 1 (CDATA)=0066
->Target address=0003+0066=0069

->Since pc relative addressing, the required
displacement=0069-0009=0060->???=060

2.3 Machine-independent
assembler features

(9)The separation of the program into blocks
nas considerably reduced the addressing
problems.

HCOPY...

T000000...

TOOOO1E...

T0O00027...

T000044...

TO0006C...

T00004D...

T00006D...

T000000...

2.3.5
Control sections
and program linking

2.3.5 Control sections and
program linking 1/7

(1)A control section Is a part of the program
that maintains its identity after assembly.
When control section from logically related
parts of a program, It Is necessary to
provide some means for them
together. A major benefit of using control
sections Is the resulting flexibility.

2.3.5 Control sections and
program linking 2/7

(2)The EXTDEF statement in a control
section names symbols called

, that are defined In this control
sections and may be used by other sections.

2.3.5 Control sections and
program linking 3/7

(3)The EXTREF statement names symbols
that are used In this control sections and

2.3.5 Control sections and
program linking ar7

(4)Example:

(Fig 2.16)
15 0003 CLOOP +JSUB RDREC 4B100000

2.3.5 Control sections and
program linking 5/7

(5)Note the different between the handing
of the expression on line 190 and the similar
expression on line 107.

(Fig 2.16)
107 1000 MAXLEN EQU BUFEND-BUFFER

109 1000 MAXLEN BUFEND-BUFFER

2.3.5 Control sections and
program linking 6/7

(6)The assembler must include information
In the object program that will cause the
loader to Insert the proper values where
they are required. The required types of
object code format to handle external
defined or external referenced symbols are
Define, and revised Modification.

2.3.5 Control sections and
program linking 777

(7)Example:

MOO0O00405+RDREC

Assembler design options

2.4 Assembler design options iss

(1) Two pass assembler with overlay
structure Is designed to execute some of its
segments overlaying others.

2.4 Assembler design options 2ss

(2)To reduce the size of the problem, many
one-pass assemblers do prohibit forward
references to data items.

2.4 Assembler design options 3/s

(3)There are two main types of one-pass
assembler. One type produces object code
directly in memory for immediate execution;
the other type produces the usual kind of
object program for later execution.

2.4 Assembler design options 4ss

(4) Load-and-go assembler: It scans source
program=> if operand Is not defined, the
operand address is omitted until the
definition is encountered = if the value of
some operand in SYMTAB is still marked
with * after the completion of scanning
source code, it indicate undefined symbol

errors.

2.4 Assembler design options s/s

(5) One-pass assemblers

. The assembler
generates another Text record with the
correct operand address. When the program
IS loaded, this address will be inserted into
the Instruction by the action of the loader.

2.4 Assembler design options ess

(6) Multi-pass assembler can made as many
passes as are needed to process the
definitions of symbols.

2.4 Assembler design options 7/8

(7)The undefined symbol Is stored in the
SYMTAB In the defining expression is
undefined while the might be
pointed by the SYMTAB.

Symbol * identicates undefined operand.
Associated with the entry of SYMTAB is a list
of the symbols whose values depend on the
symbols of this entry.

2.4 Assembler design options ass

(8) Operation of multi-pass assembler:
Defined symbol
- SYMTAB (&n-1) or *
=»> expression
-» Fecursive operation
- In any symbols remained undefined
-> errors.

	Example of SIC assembler language program 2/4
	Object Program correspond to Fig 2.2 case1
	Object Program correspond to Fig 2.2 case2
	Object Program correspond to Fig 2.2 case3
	Object Program correspond to Fig 2.2 case4
	Object Program correspond to Fig 2.2 case5
	Object Program correspond to Fig 2.2 case6
	Object Program correspond to Fig 2.2 case7
	Object Program correspond to Fig 2.2
	2.2 Machine-dependent assembler
	2.2 Machine-dependent assembler
	2.2 Machine-dependent assembler
	2.2 Machine-dependent assembler
	2.2 Machine-dependent assembler
	2.2 Machine-dependent assembler
	2.2 Machine-dependent assembler
	2.2 Machine-dependent assembler
	2.2 Machine-dependent assembler
	2.2 Machine-dependent assembler
	2.3 Machine-independent 	assembler features
	2.3 Machine-independent assembler features
	2.3 Machine-independent assembler features
	2.3 Machine-independent assembler features
	2.3 Machine-independent assembler features
	2.3 Machine-independent assembler features
	2.3 Machine-independent assembler features
	2.3 Machine-independent assembler features
	2.3 Machine-independent assembler features
	2.3 Machine-independent assembler features
	2.3.5 �Control sections �	and program linking
	2.3.5 Control sections and program linking				 1/7
	2.3.5 Control sections and program linking				 2/7
	2.3.5 Control sections and program linking				 3/7
	2.3.5 Control sections and program linking				 4/7
	2.3.5 Control sections and program linking				 5/7
	2.3.5 Control sections and program linking				 6/7
	2.3.5 Control sections and program linking				 7/7
	2.4 �Assembler design options
	2.4 Assembler design options	 1/8
	2.4 Assembler design options	 2/8
	2.4 Assembler design options	 3/8
	2.4 Assembler design options	 4/8
	2.4 Assembler design options	 5/8
	2.4 Assembler design options	 6/8
	2.4 Assembler design options	 7/8
	2.4 Assembler design options	 8/8

