

Fault Tolerant Engineering in a Conceptual Design

Saman Aliari Zonouz, Jafar Habibi
aliari@ce.sharif.edu, habibi@sharif.edu
Department of Computer Engineering

Sharif University of Technology

Abstract

Many risks usually plague a software development life

cycle (SDLC). The relationship between product quality and
process capability and maturity has been recognized as a
major issue in software engineering based on the premise
that improvements in process will lead to higher quality
products. This paper presents fault tolerant software
engineering (FTSE) in a conceptual design. The concepts of
FTSE are based on three types of redundancy: the human
resource redundancy, the time redundancy, and the software
redundancy. Employing fault tolerance techniques from the
beginning steps of SDLC makes it possible to choose the
appropriate models, design and infrastructure in order to
develop reliable software. Moreover, it results in clearer
program code, increased readability, less maintenance
overhead, and delivers adequate performance.
Key words: Fault tolerance, Software Engineering, Fault
tolerant engineering, Software development life cycle.

1. Introduction

Generally, Software reliability engineering (SRE) stems

from the needs of software users [1]. Nowadays operations
are increasingly more dependent on
software-based systems and tolerance of failures of such
systems is decreasing because of their growing complexity.
Software engineering is not only expected to help deliver a
software product of required functionality on time and within
cost; it is also expected to help satisfy certain quality criteria
[2]. The most prominent one is reliability. SRE is the
applying science of predicting, measuring, and managing the
reliability of software-based systems to maximize customer
satisfaction [1, 2, 3, 4].

Many risks usually plague a software development life
cycle (SDLC). Risk analysis and management are a series of
steps that help a software team to understand and manage
such risks [5, 6, 7, 8, 9, 10, 11, 12, 13]. Risk management
steps include risk identification, risk analysis, risk ranking,
and planning to manage highly probable risks [5].

In addition to risk management, measuring and
evaluating the stability of engineering process is important
because of the recognized relationship between process

quality and product quality [14]. Stability is the condition of
a process that results in increasing reliability, decreasing risk
of deployment, and increasing test effectiveness. Moreover,
our focus is on process stability, not code stability.

We concentrate on the chief quality factor, i.e.
reliability. According to Lehman, large projects are never
completed; they just continue to evolve [15]. In other words,
with software, we are dealing with a moving target;
therefore, a reliable Software Development Life Cycle
(SDLC) is required.

Khoshgoftarr et al used discriminated analysis in each of
iterations of their project to predict fault prone modules in
the next iteration [16]. This approach provided an advance
indication of reliability and the risk of implementing the next
iteration. This study deals with product reliability but does
not address the issue of process stability.

The objective of this paper is to employ fault tolerance
concepts throughout software development process. Having
fault tolerance in mind from the beginning allows software
developers to engineer support for fault tolerance which
makes it possible to state the required level of fault tolerance
precisely and then choose the appropriate models, design and
infrastructure to achieve it. Moreover, it helps reduce the
complexity of fault tolerance which results in clearer
program code, increased readability, less maintenance
overhead, and delivers adequate performance. For this
purpose, error confinement techniques provided by well-
known fault tolerance models, error recovery, and structured
error location will be used; consequently, the resulting design
will make use of fault tolerant infrastructures.

This paper is organized as follows: in section 2, related
work will be described. Part 3 is devoted to a brief
clarification of fault tolerance concepts. In parts 4, 5, and 6,
human resource redundancy, time redundancy, and software
redundancy will be explained in order.

2. Related Work

A number of useful related process and maintenance

measurement projects have been reported in the literature.
Briand, et al, developed a process to characterize software
maintenance projects [17]. They present a qualitative and
inductive methodology for performing objective project
characterizations to identify maintenance problems and
needs. This methodology aids in determining causal links

 2

between maintenance problems and flaws in the maintenance
organization and process. Although the authors’ have related
ineffective maintenance practices to organizational and
process problems, they have not made a linkage to product
reliability and process stability.

Frankl et al has developed an approach that is to provide
mechanisms to improve reliability of software after it has
been implemented [18]. They use testing techniques to
identify faults in the software that are likely to cause failures.
Although they carry out an important research agenda, we
believe that is cheaper to design and evaluate dependability
concerns in the early stages of software engineering process.

Henry, et al, found a strong correlation between errors
corrected per module and the impact of the software upgrade
[19]. This information can be used to rank modules by their
upgrade impact during code inspection in order to find and
correct these errors before the software enters the expensive
test phase. The authors treat the impact of change but do not
relate this impact to process stability.

Khoshgoftarr et al used separate analysis in each of
iterations of their project to predict fault prone modules in
the next iteration [16]. This approach provided an advance
indication of reliability and the risk of implementing the next
iteration. This study deals with product reliability but does
not address the issue of process stability.

Pearse and Oman applied a maintenance metrics index
to measure the maintainability of C source code before and
after maintenance activities [20]. This technique allowed the
project engineers to track the "health" of the code as it was
being maintained. Maintainability is assessed but not in
terms of process stability.

Pigoski and Nelson collected and analyzed metrics on
size, trouble reports, change proposals, staffing, and trouble
report and change proposal completion times [21]. A major
benefit of this project was the use of trends to identify the
relationship between the productivity of the maintenance
organization and staffing levels. Although productivity was
addressed, product reliability and process stability were not
considered.

Sneed reengineered a client maintenance process to
conform to the ANSI/IEEE Standard 1291, Standard for
Software Maintenance [22]. This project is a good example
of how a standard can provide a basic framework for a
process and can be tailored to the characteristics of the
project environment. Although applying a standard is an
appropriate element of a good process, product reliability and
process stability were not addressed.

Stark collected and analyzed metrics in the categories of
customer satisfaction, cost, and schedule with the objective
of focusing management's attention on improvement areas
and tracking improvements over time [23]. This approach
aided management in deciding whether to include changes in
the current release, with possible schedule slippage, or
include the changes in the next release. However, the authors
did not relate these metrics to process stability.

Schneidewind has integrated product and process of
software development to propose a unified product and
process measurement model for product evaluation and

process stability analysis [24]. He concluded, based on both
predictive and retrospective use of reliability, risk, and test
metrics, that it is feasible to measure and assess both product
quality and the stability of a maintenance process.

3. Fault Tolerant Engineering

A successful software project requires a reliable process

which guarantees to accomplish the project. As mentioned
above, conventional approaches cause to minimization or
elimination of the predictable or unpredictable risks.
Considering the development process itself as a system
composed of components (i.e. phases of the SDLC), helps us
to realize the existing approaches aid to increase the
reliability of the process without employing fault tolerance
concepts, instead they attempt to augment the reliability of
the whole process by replacing the current components with
the more reliable ones.

We propose a fault tolerant process in a conceptual
design that will help to have a reliable SDLC. It is important
to declare that we focus on the process model, not on the
product (e.g. software system). The offered process includes
fault detection, fault containment, fault location, fault
recovery, and fault masking.

A system which employs fault masking achieves fault
tolerance by hiding faults that occur. Such a system needs
fault containment rather than fault detection; in other words,
we localize the effects of a fault. Systems which do not
employ fault masking require fault detection, fault location,
and fault recovery to achieve fault tolerance. Fault tolerance
of a system is usually performed using some form of
redundancy [25]. We consider redundancy as categorized
into three groups: human resource redundancy, time
redundancy, software redundancy.

4. Human Resource Redundancy

We propose three basic forms of human resource

redundancy: passive, active, and hybrid. Passive techniques
use the concept of fault masking to hide the occurrence of
faults in the process and prevent the faults resulting in
project failures. Passive approaches are designed to achieve
fault tolerance without requiring any action on the SDLC
phases.

The active approach (i.e. the dynamic method), achieves
fault tolerance by detecting the existence of faults and
performing some action to remove the faulty human resource
or team from the development process. In other words, active
techniques require that the process be reconfigured to
tolerate faults; therefore, active approach employs fault
detection.

Hybrid techniques combine the attractive features of
both the passive and active approaches. Fault masking is
used in hybrid processes to avoid failures. Fault detection,
fault location, and fault recovery are also used in the hybrid
approaches to improve fault tolerance by removing faulty
team and replacing it with spares.

 3

4.1. Passive Resource Redundancy

Passive human resource redundancy relies on voting

mechanisms to mask the occurrence of faults in working
teams. Most passive approaches are developed around the
concept of majority voting. Triple modular redundancy, as
the most important passive redundancy technique, is
clarified.

4.1.1. Triple Modular Redundancy

The most common form of passive human resource

redundancy is called triple modular redundancy (TMR). The
basic concept of the TMR is to triplicate the working team on
a same issue and perform a majority vote to determine the
output of the development phase which requires employing
someone as the voter. If one of the modules (i.e. working
teams) becomes faulty, the two remaining fault free modules
mask the results of the faulty module when the majority vote
is performed. A sample TMR of analysis and design team
has been illustrated in Figure.1.

Figure 1: A sample TMR of analysis and design team

The primary difficulty with TMR is the voter; if the

voter fails (e.g. a bad decision), the complete phase fails;
therefore voter is usually considered as a single point of
failure. Several techniques can be used to overcome the
effects of voter failure. One approach is to triplicate the
voters and provide three independent outputs.

The three teams each receives identical inputs and
perform identical functions using those inputs. The results
generated by the teams are voted on to produce three results.
Each result is correct as long as no more than one module, or
input, is faulty. One method to vote is to have a
parameterized mathematical expression in order to select one
of the outcomes.

A generalization of the TMR approach is the N-modular
redundancy (NMR) technique. NMR applies the same
principle as TMR but employs N teams as opposed to only
three. In most cases, N is selected as an odd number so that a
majority voting arrangement can be used.

4.2. Active Resource Redundancy

Active human resource redundancy techniques attempt
to achieve fault tolerance by fault detection, fault location,
and fault recovery. In other words, this approach does not
attempt to prevent faults from producing failures within the
development process.

4.2.1. Duplication with Comparison

Duplication with comparison is an example of active

human resource redundancy. The basic concept of
duplication with comparison is to employ two technical
teams, have them perform the same jobs in parallel, and
compare the results of their function which requires
employing someone as the comparator. In the event of a
disagreement, an error message is reported to the manager;
therefore, a meeting is required to decide which one to select.

4.2.2. Standby Sparing

Second form of active human resource redundancy is

called the Standby sparing (or standby replacement)
technique in which, one of the technical teams is operational
and one or more teams serve as standbys, or spares. If a fault
is detected and located, the faulty team is removed from
development process by the management and replaced with a
spare team (See Figure.2).

Standby sparing can bring a development process back
to full operation capability after the occurrence of a fault, but
it requires that a momentary disruption in performance occur
while the reconfiguration, i.e. replacing the faulty team with
the spare one, is performed. If the disruption in process must
be minimized, hot standby sparing can be used.

In the hot standby sparing technique, the spare teams
observe working team and know as much as them; therefore,
spare teams are prepared to take over at any time. In contrast
to hot standby sparing is cold standby sparing where the
spare teams do not have information about the working team,
their inputs, or outputs until needed to replace a faulty team.

The disadvantage of cold standby sparing approach is
the time required to train the spare team and perform
initialization prior to bringing the team into active service.
The advantage of cold standby sparing is that spare teams do
not use resources until needed to replace a faulty team.

Figure 2: a sample standby sparing

 4

4.2.3. Pair and Spare

The pair and a spare technique, combines the features

present in both standby sparing and duplication with
comparison. In essence, the Pair and a spare approach uses
standby sparing; however, two teams are working in parallel
at all times and their results are compared to provide the
error detection capability required in the standby sparing
approach. As soon as a fault is detected, the management
initiates the reconfiguration process that removes faulty team
and replaces it with a spare one.

When the faulty team cannot be distinguished, a
variation on the pair and a spare technique can be used that is
to always employ teams in pairs. During the development
process, teams are permanently paired together, and when
one team fails or become faulty, neither team in the pair is
used.

4.2.4. Hard Deadlines

One form of human resource redundancy that is

extremely useful for detecting faults in a development
process is the hard deadline based approach. A hard deadline
management is an active form of human resource
redundancy; because some action is required on a phase of a
SDLC to indicate a fault-free status.

The basic concept of the hard deadline management is
that the lack of an outcome on a milestone indicates
existence of a fault. A hard deadline manager is a supervisor
who starts monitoring of a phase as soon as the process
starts. The failure of the process to perform the hard deadline
manager resets or cancels the process to prevent a SDLC
failure from occurring.

4.3. Hybrid Resource Redundancy

The fundamental concept of hybrid human resource

redundancy is to combine the attractive features of both the
active and the passive approaches. Fault masking is
employed to prevent the working teams from producing
erroneous results; and fault detection, fault location, and fault
recovery are used to reconfigure the development process in
the event of a fault. Hybrid redundancy can be very
expensive in terms of the amount of human resource required
to maintain the development process.

4.3.1. N-modular Redundancy with Spares

The idea of N-modular redundancy (NMR) with spares

is to provide N modules (i.e. technical teams) arranged in a
voting, or a form of voting, configuration. In addition, spare
teams are provided to replace faulty ones.

The benefit of NMR with spares is that a voting
configuration can be restored after a fault has occurred. For
example, a development process that uses TMR with one
spare will mask the first team fault that occurs. If the faulty

team is then replaced with the spare one, the second team
fault can also be masked, thus providing tolerance of two
team faults. For a passive approach to tolerate two team
faults, five teams must be configured in a fault masking
arrangement. The hybrid approach can accomplish the same
results using only four teams and some fault detection,
location, and recovery techniques.

4.3.2. Self-Purging Redundancy

A second approach to hybrid redundancy is called self-

purging redundancy [26]. The basic concept of self-purging
redundancy is similar to that of the NMR with spares
approach.

The major difference is that all teams are actively
participating in the development process in the self-purging
technique, whereas some teams function as spares in the
NMR approach and may not be an active part of the
development process until a fault occurs. Each of the N
teams is authorized to remove itself from the process in the
event that its output disagrees with the voted output of the
process.

There are two basic features of the self-purging
redundancy concept. Firstly, N teams are obtained. Each
team is capable of performing the functions required of the
development process. Second, a voter is employed to
produce the development process result and provide masking
of any faults that occur.

4.3.2. Sift-Out Modular Redundancy

Another hybrid redundancy method is called sift-out

modular redundancy [27]. As illustrated in Figure.3, Sift-out
modular redundancy also uses N identical teams that are
configured into a development process employing specialists
called comparators, detectors, and collectors.

The responsibility of the comparator is to compare each
team's output with the remaining teams' outputs. Thus, the
comparator compares every two outputs with each other and
reports each comparison that is performed.

The role of the detector is to determine which
disagreements are reported by the comparator and to remove
a team that disagrees with a majority of the remaining teams.

Figure 3: Sift-out Modular Redundancy

 5

The last major individual of the sift-out modular
redundancy approach is the collector. The responsibility of
the collector is to report the system's output, given the
outputs of the individual teams and the reports from the
detector that indicate which teams are faulty. A module that
is properly identified as faulty is not allowed to influence the
output of the system.

4.3.3. Triple-Duplex Architecture

The final hybrid redundancy technique is called the

triple-duplex architecture because it combines duplication
with comparison and triple modular redundancy. The use of
TMR allows faults to be masked and continuous, error-free
performance to be provided for up to one faulty team. The
use of duplication with comparison allows faults to be
detected and faulty teams removed from the TMR voting
process.

5. Time Redundancy

The fundamental problem with the forms of redundancy
discussed thus far is the penalty paid in extra human resource
for the carrying out the various techniques. Human resource
redundancy can require large amounts of extra human
resource for their implementation. In an effort to decrease the
human resource required to achieve fault detection or fault
tolerance, time redundancy is considered as follows.

Time redundancy methods attempt to reduce the amount
of extra human resource at the expense of using additional
time. In many SDLCs, the time is of much less importance
than the human resource because human resource is a
physical entity that impacts total cost, staff size and
responsibilities. Time on the other hand, may be readily
available in some development processes.

The selection of particular type of redundancy is very
dependent upon the SDLC. For example, some projects can
better stand additional human resources than additional time;
others can tolerate additional time much more easily than
additional human resources. The selection in each case must
be made by examining the requirements of the process and
the available techniques that can meet such requirements.

5.1. Transient Fault Detection

The basic concept of time redundancy is the repetition of

a phase in ways that allow faults to be detected. The most
basic form of time redundancy is to accomplish the same
process two or more times and compare the results if a
discrepancy exists. If an error is detected, the process can be
performed again to see if the disagreement remains or
disappears. Such approached are often good for detecting
errors resulting from transient faults (e.g. programming
faults), but they cannot protect against errors resulting from
permanent faults.

Time redundancy can often be employed to distinguish
between the permanent and the transient faults. The

processes can be performed one or more times after the
detection of the first error; if the error condition clears, the
fault that caused the error can be assumed to have been
transient. If, however, the problem continues to be detected,
the fault is most likely permanent, and the faulty teams of the
SDLC must be removed.

5.2. Permanent Fault Detection

One of the biggest potentials of time redundancy,

however, appears to be the ability to detect permanent faults
while using a minimum of extra human resources. REDWC
[28] is considered as follows.

5.2.1 Re-performing with Duplication with

Comparison

An alternative method that takes advantage of both time

redundancy and human resource redundancy concepts is
called re-performing with duplication with comparison
(REDWC). The method with which error detection is
accomplished resembles that of duplication with comparison.
Time redundancy technique is then employed to complete
the development process and obtain the final result.

REDWC is similar in many respects to a method
described in [29]. Re-performing for error detection can be
accomplished using time redundancy techniques; therefore,
The time redundancy approach can provide for error
correction if the computations are repeated three or more
times.

6. Software Redundancy

In software development life cycle (SDLC), many fault

detection and fault tolerance techniques can be implemented
in software. The redundant human resource necessary to
implement the capabilities can be minimal, whereas the
redundant software can be substantial. Redundant software
can occur in many forms; you do not have to replicate
complete programs to have redundant software. Software
redundancy can appear as several extra lines of code used to
check the result of a particular development process.

6.1. Consistency Checks

A consistency check uses a prior knowledge about the

characteristics of the result of a specific SDLC phase to
verify the correctness of the result. For example in some
projects it's known in advance that a variable should never
exceed a certain magnitude (e.g. a variable in repository
CASE tool). If it exceeds that magnitude, an error of some
sort is present.

Another form of consistency checking that can prove
valuable is to compare the measured performance of the
result with some predicted performance. This technique is
particularly useful in engineering domain where some
dynamic system (e.g. software development process) is under

 6

control. The dynamic system can be modeled and the
predicted performance obtained from a software
implementation of the model. The actual performance of the
system can then be measured and compared with model
predicted performance. Any significant deviation of
measured performance from the predicted performance can
indicate a fault.

6.2. Tools Redundancy

The consistency checks technique use extra, or

redundant, software to detect faults that can occur in human
resource. We have not considered approaches for detecting
or possibly tolerating faults that can occur in the software
tools used in the SDLC.

Software does not break as human resource does, but
instead software faults are the result of incorrect software
designs; therefore, any technique that detects faults in
software must detect design flaws.

The objective of tools redundancy is to allow certain
design flaws in software modules to be detected. The basic
concept of tools redundancy is to design and code the
software using different tools and to compare the results
produced by these tools; besides, the product is designed
from the same set of specifications such that each of the
modules performs the same function; however, it is hoped
that by performing the redundant designs independently, the
same mistakes will not be made by the different tools;
therefore, when the fault occurs, the fault either does not
occur in all modules or it occurs differently in each module,
so that the results generated by the modules will differ.

7. Conclusion

As stated in the introduction, our emphasis in this paper
is to propose a reliable process model conceptually. This
process model is obtained by considering both fault tolerance
concepts and software engineering models together. Fault
tolerance of development process is accomplished using
redundancy which is categorized into three types: human
resource redundancy, time redundancy, and software
redundancy.

References

[1] J.D. Musa, and W.W. Everett, "Software Reliability

Engineering: Technology for the 1990s", IEEE Software, Vol.
7, pp. 36-43, November 1990.

[2] "Handbook of Software Reliability Engineering", McGraw-

Hill, editor M.Lyu, 1996.

[3] Sheldaon, F.T., Software Reliability Engineering Case Studies,

8th Intl. Symposium on Software Reliability Engineering, IEEE
CS Press, November, 1997.

[4] J.D. Musa, Software Reliability Engineering, McGraw-Hill

New York, 1998.

[5] Roger S.Pressman, "Software Engineering", McGrawHill,

2001.

[6] Boehm B.W., "Software Risk Management", IEEE Computer

Society Press, 1989.

[7] Charette R.N., "Software Engineering Risk Analysis and

Management", McGrow-Hill 1989.

[8] Hall E.M., "Managing Risk: Methods for Software Systems'

Development", Addison-Wesley, 1998.

[9] Higuera R.P., "Team Risk Management", CrossTalk, U.S.

Dept. of Defense, January 1995, p. 2-4.

[10] Karolak D.W., "Software Engineering Risk Management",

IEEE Computer Society Press, 1996.

[11] Keil M., et al, "A Framework for Identifying Software Project

Risks", CACM, Vol.41, No.11, November 1998, pp. 76-83.

[12] Williams R.C., J.A. Walker, and A.J. Dorofee, "Putting Risk

Management into Practice", IEEE Software, May 1997, pp. 75-
81.

[13] Thomsett R., "The Indiana Jones School of Risk

Management", American Programmer, Vol.5, No.7, September
1992, pp. 10-18.

[14] Craig Hollenbach, et al, "Combining Quality and Software

Improvement", Communications of ACM, Vol. 40, No.6, June
1997, pp. 41-45.

[15] Meir M. Lehman, "Programs, Life Cycles, and Laws of

Software Evolution", Proceeding of the IEEE, Vol. 68, No.9,
September 1980.

[16] Taghi M. Khoshgoftaar, Edward B. Allen, Robert Halstead,

and Gary P. Trio, "Detection of FaultProne Software Modules
During a Spiral Life Cycle", Proceedings of the International
Conference on Software Maintenance, Monterey, California,
November 4-8, 1996, pp. 69-76.

[17] Lionel C.Briand, Victor R. Basili, and Yong-Mi Kim, "Change

Analysis Process to Characterize Software Maintenance
Projects", Proceedings of International Conference on
Software maintenance, Victoria, British Columbia, Canada,
September 19-23, 1994, pp. 38-49.

[18] P. Frankl, R. Hamlet, B. Littlewood, and L. Strigini, "Coosing

a Testing Method to Deliver Reliability", International
Conference on Software Engineering, pages 68-78, 1997.

[19] Joel Henry, Sallie Henry, Dennis Kafura, and Lance Matheson,

"Improving Software Maintenance at Martin Marietta", IEEE
Software, Vol. 11, No.4, July 1994, pp. 67-75.

 [20] Troy Pearse and Paul Oman, "Maintainability Measurements

on Industrial Source Code Maintenance Activities",
Proceedings of the International Conference on Software
Maintenance, Opio (Nice), France, October 17-20, 1995, pp.
295-303.

 7

[21] Thomas M. Pigoski and Lauren E. Nelson, "Software
Maintenance Metrics: A Case Study", Proceedings of the
International Conference on Software Maintenance, Victoria,
British Columbia, Canada, September 19-23, 1994, pp. 392-
401.

[22] Harry Sneed, "Modelling the Maintenance Process at Zurich

Life Insurance", Proceedings of the International Conference
on Software Maintenance, Monterey, California, November 4-
8, 1996, pp. 217226.

 [23] George E. Stark, "Measurements for Managing Software

Maintenance", Proceedings of the International Conference on
Software Maintenance, Monterey, California, November 4-8,
1996, pp. 152161.

[24] Norman F. Schneidewind, "Measuring and Evaluating

Maintenance Process Using Reliability, Risk, and Test
Metrics", IEEE Transactions on Software Engineering, Vol.
25, No.6, November/Dcember 1999, pp. 768-781.

 [25] Johnson B.W., "Fault tolerant microprocessor based systems.",

IEEE Micro, Vol.4, No.6, December 1984, pp. 6-21.

[26] Losq J., "A highly efficient redundancy scheme: Self-purging

redundancy", IEEE Transactions on Computers, Vol.C-25,
No.6, June 1976, pp.569-578.

[27] De Sousa P.T., and F.p. Mathur, "Soft-out modular

redundancy", IEEE Transactions on Computers, Vol.C-27,
No.7, July 1978, pp. 624-627.

 [28] Johnson B.W., J.H. Aylor, and H.H Hana. "Efficient use of

time and hardware redundancy for concurrent error detection
in a 32-bit VLSI adder", IEEE Journal of Solid-State Circuits,
Vol.23, No.1, February 1988, pp. 208-215.

 [29] Toy W., N., "Self-checking arithmetic unit", United States

Patent Number 4, 314, 350, Bell Telephone Laboratories,
Murray Hill, N.J., Feb.2, 1982.

