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AbsnacbIn mobile robot applications such as cleaning and 
security patrolling, a fundamentally important problem is to 
design feasible trajectories and steering control so that the 
robot moves collision-free and covers all the points (in its 
sensorleffector range) in a dynamic and uncertain environ- 
ment. We formulate such a problem and propose constructive 
algorithms in sequential modules to solve it. First, a minimum- 
area rectangle is placed encasing the boundary of the set to he 
covered. Second, minimum number of circles of the radius of 
coverage range are placed to completely cover the rectangle. 
Third, a patrolling path is searched along the boundary of 
the set in a spital. Feasible trajectories are then designed 
to account for the nonholonomic kinematics of the robot 
and to avoid collisions from the dynamic obstacles detected 
by the robot onboard sensors. Since analytic solutions are 
given in generating feasible trajectories, the algorithm can he 
implemented in real time. 

I. INTRODUCTION 

Motion planning for a mobile robot to reach a goal 
position from its start position has been intensively studied 
for decades. Up to date, limited research attention has been 
received to the problem of planning a path of complete 
coverage of an environment by a mobile robot, although 
such a problem is very important in various applications 
such as clearing, security patrolling, and sensor network 
deployment (see [I], [ 2 ] ,  [3], [4]). Particularly, considering 
the nonholonomic kinematic constrains posed by the mobile 
robot, and the constrains posed by dynamic obstacles in the 
uncertain environment, the complete coverage path planning 
and control problem becomes challenging. Recent progress 
has been made in [5 ]  to generate real time feasible trajec- 
tories using parameterized polynomial steering control for 
nonholonomic robots moving in 2D dynamically changing 
environments. This paper is to study the complete coverage 
path planning problem, and extend the results of [ 5 ]  to the 
so-defined patrolling control problem. 

In the remainder of the paper, we first formulate the 
patrolling control problem and give necessary assumptions 
in Section 2. And then in Section 3, patrolling control design 
is proposed with constructive algorithms given. Finally, the 
paper is concluded in Section 4. 

11. PROBLEM FORMULATION 
We consider the problem of designing a steering control 

for a mobile robot to patrol a connected region in a dynamic 
and changing environment. As shown in figure I, patrolling 
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control is to generate a trajectory and the corresponding 
control to cover the region over time, and possible changes 
in the environment are due to limited ranges of on-board 
sensors and to appearance of and/or motion of obstacles. 
Specifically, the problem is formulated as follows. 

Fig. I .  
moving obstacles 

Palrolling a connected region in the presence of dynamically 

Assumption 1: The robot under consideration is repre- 
sented by a 2-dimensional circle with center ai O ( t )  
(x ) and of radius TO. Its motion is controlled but non- 
holonomic and is represented by the velocity vector u7(t).  
Assumption 2: Set R to be covered is two-dimensional, 
connected (with respect to a circle of radius To), and has a 
convex shape. T is the time period to achieve the coverage. 
Assumption 3: The range of mbot's motion sensors is 
described by a circle centered at O( t )  and of radius R,. 
while its coverage range (by its end-effector or detection 
sensors) is described by a circle centered at O(t)  and of 
radius R,. 
Assumption 4 The ith object, i = 1,. , %, will be 
represented by a circle centered at point Oi( t )  and of 
radius T i ,  denoted by Bi(Oi(t) ,  q). For moving objects, 
the origin Oi(t) is time varying and moving with linear 
velocity vector ui ( t ) ,  but velocity ui is assumed to be a 
constant, denoted by u t ,  within a specified period of time 
t E [to + k 
Patrolling Control Problem: Given initial position 0, and 
initial orientation 00 of the robot and under assumptions I 
to 4, find a piecewise continuous steering control under 
which the robot moves collision-free and covers all the 
points in set R over time. Mathematically, the problem is 
to determine a path p ( t )  by ensuring 

+ (k + l )Ts)  (where T, is ofren small). 
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subject to and lth column (1 5 1 5 m) disk is at [zt , & 1: 

lIp(t) - Oi(t)lI t TO + T i ,  

Vt  E [to,  Q + T] and V i  E {l, (2) 

where 4(q ) is a weighting function to be chosen by the 
designer. 

Intuitively, the patrolling problem has at least one so- 
lution if the robot is capable of moving sufficiently fast, 
if motion of the obstacles does not make any part of R 
unconnected, and if those obstacles with T~ > R, are not 
stationary. The default value for $ ( q  ) is 1. If +(p'+v ) 
@(p*) for any v satisfying llvll = 0.5RC, path p ( t )  
either encircles q* or covers q* twice. If +(q*,  4 c+3(q') 
CO, path p ( t )  will pass through 4'. If 4(q ) CO for all 
t # t', the path covers q at time t = t'. For simplicity, 
the default value of 4(q ) is used in the following 
sections. 

, TI,}, 

[0.5 + ( 1  - l)gRc, ( k  - l)v%R,] , I if 1 is an odd integer; 

b . 5  + (1  - l)$Rc, $Rc + ( k  - l)&R,] , 
if 1 is an even integer. 

(3) 

b: I $ 1  = 

The number of disks needed in each column and row, n 
and m, can be found as: 

where I (x) equals the 
111. PATROLLING CONTROL DESIGN integer part of z, Re (z) z - I (z), zw is the length 

of the rectangular edge along the x-axis, yw is the length 
Of the rectangular edge 

is the integer operation and I 

To tackle the proposed patrolling control problem, we 
first study the static complete coverage problem. And 
dynamic feasible trajectory is then designed with steering 
control explicitly constructed. 

the y-axis. 

Since the coverage range of the robot is represented by 
a circle, the static coverage problem is to find a number 
of circles of radius R, to completely cover n. Obviously, 
there are many solutions to this problem. Our objective is to 
find an optimal solution to minimize the repeated coverage. 

Find a minimum number of circles of radius R, to 
completely cover R in the two-dimensional plane. 

1) Minimum Number of Circles to Cover A Rectangle: 
Minimal number of circles to cover a rectangle was reported 
in [6]. However, placement pattern of the circles to achieve 
the minimum number bas not been seen in literatures. We 
present a solution to the optimal placement in the following. 

To describe the solution, we refer the circle of radius R, 
as a &-disk, and the rectangle to be covered is denoted 
by W .  A pattern of R,-strip is composed of a string of 

Therefore, the problem in concern is defined as: Fig. 2. Cavefing a rectangle using a minimum number of circles 

Theorem 1: The disk placement pattern described above 
with centers of'disks placed at (3) has a minimum number 
of disks>o'cover the rectangle W .  

Pru,of: From (3, it can be readily obtained that the 
number of disks needed is: 

/ N = ($il,j) ...x2...) YWXW =.~i.. 2 4  (...x2.~~) YWXW (6) 

ne area by these disks is 

(7) 
2TJ3 R,-disks placed along a vertical line such that the distance A = T :jV= - ~ ~ - - - - - - ( y W z w )  

between the centers of any two adjacent R,-disks is 6 R C .  9 
We place m columns of R,-strips oriented parallel to the 
y-axis with the distance between the centers of any two 
adjacent R,-strips is 1.5R,. In a global Cartesian coordinate 
with the origin is at the left bottom of the rectangle W ,  we 

disks in each strip to completely cover the rectangular W ,  
as shown in Figure 2.  The center of the kth row (1 5 k 5 n) 

Therefore, the ratio of the area to that of the rectangle 
(which may be thought of as measuring the proportion of 
unavoidable overlapping) is 

A 2 ~ ~ 5  
(8) place m R,-strips parallel to the y-axis which contain n c- d = ....... ~~~ = ..... = 1.209 

Y W X W  9 
It has been proved in [61 that 1.209 is the optimal value. 
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2) Minimum-Area Encasing Rectangle for  an Arbitrary 
Closed Curve: In [7], a stepwise construction algorithm 
suitable for computer processing is presented to find the 
rectangle of minimum area in which a given arbitrary plane 
curve can he contained. It first utilizes the chain-coding 
scheme to represent an arbitrary plane curve in terms of 
a connected sequence of short, straight-line segments by 
overlaying a fine-spaced square grid and then connecting in 
sequence the grid notes that lie closest to the intersections 
of the curve with the grid. Then in the chain code, the octal 
digits 0 to 7 are used to represent different directions in the 
counter-clockwise sense beginning with the positive x direc- 
tion. The minimum-perimeter convex polygon that encases 
the convex hull of the given curve is then determined. And 
finally the minimum-area rectangle that encases this convex 
polygon is found. It was proved that the obtained rectangle 
is the minimum-area encasing one for the given curve. 

3) Minimum Number of Disks for  Region Coverage: 
Based on the above subsections, we present an algorithm 
for placing a minimal number of disks to completely cover 
the region R. 

Step 1: Determine a minimum-area rectangle that encases 
the boundary of the R using the algorithm presented in 
Section 111-A.2. 

Step 2: Rotate the global Cartesian coordinate so that 
the origin is at the lower-left comer of the rectangle and 
two edges of the rectangle is on the positive x and y axes 
respectively. 

Step 3: Place disks using the pattem described in Section 
111-A.l to cover the rectangle generated in the previous step. 

Step 4: Exclude the disks whose centers are outside the 
region, and denote the centers of all rest disks as the set of 
points A: 

where n A  is the total number of points in the set A, and 
(zc, U) are placed according to the pattem of (3). 

Note that in Step 4 ,  some points near the boundary may 
not be covered by the disks whose centers are inside 0. 
An additional step may be added for a better coverage 
for points near the boundary: Check the distance between 
each vertex and the set A; if the smallest distance is bigger 
than the radius of the disk R,, then add the vertex to the 
set A. Additional analysis to guarantee near-boundary-point 
coverage is out of the scope of this paper. 

Figure 3 shows a convex region being covered by mini- 
mum number of disks. 

B. Patrolling Paths 

After the coverage disks are placed as shown in Figure 3, 
a patrolling path can be planned for the robot to go through 
the centers of the disks, i.e., the set A. It was presented in 
[4] that complete coverage paths can be searched based on 
cell representation of the environment according to different 
rules. Intuitively, a path exists to go along the boundary 

Fig. 3. Covenng a convex region using a minimum number of disks 

of the region in a spital. We first define the following 
terminologies: 

z$ , ) in the Definition I ;  For each point (zi ,  U) 

). 
In other words, its neighbors are the vertices of the hexagon 
whose center is at the point. 
Figure 4 shows the six neighbors of a point. 

Fig. 4. Sir neighbors of a paint 

Definition 2: Assume that the boundary is represented 
) to 

), B) ,  is the smallest 
by a set of points B. The distance of a point (z 
the boundary, denoted by d 
distance of (z 

( z 
) to all points of B. That is, 

where II(z ), ( a  )I1 denotes the Euclidean distance of the 
two points (z ) and (U ). 

Our algorithm to find a complete coverage path is as 
follows: 
Set Start point to Current 
Set all other points in A to Unvisited 
LOOP 
Find Unvisited Neighboring point whose distance to the 
boundary is the smallest 
If no Neighbor point found then Mark as Visited and Stop 
at End 
Mark as Visited and set Current point to Neighboring point 
LOOP END 

Figure 3 shows such a path covering a convex region. 
The path is represented by a sequence of points, denoted 
by: 

P : (q, g), j =  1, . . . An (11) 
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The kinematic model (12) can be transformed into the 
well-defined chained-form: 

i l  = U1 

.i* = U 2  

i s  = WJl 

i q  = t 3 U 1  (13) 

x - - c  e) 
under the following coordinate and input transformations: 

1 
2 

z1 = 

Fig. 5 A coverage path 

Note that the difference of the set P and A is that the 
points in P are in sequence while the points in A are not. 
In other words, (q, a) in P is the Start position of the 
robot, and (xn,, sa) in P is the End position. 

C. Feasible Patrolling Trajectories for Nonholonomic 
Robots 

It is well known that nonholonomic constraints of mobile 
robots (kinematic constraints) make time derivatives of 
configuration variables of the system non-integrable, and 
any given path in the configuration space does not neces- 
sarily correspond to a feasible path for the nonholonomic 
system. To make the planned path trackable by nonholo- 
nomic robots, we have to design feasible trajectories which 
accounts for the kinematic constrains of the robots, and are 
also free of collision to obstacles in'the environment. We 
apply the recently developed real tim& trajectory generation 
algorithm, published in [ 5 ] ,  to connect every two adjacent 
path points in the set P. To make the paper self-complete, 
we cite the main result from [5 ] .  

For a car-like mobile robot whose front wheels are 
steering wheels and rear wheels are driving wheels but have 
a fixed forward orientation, the state space representation 
of the kinematic model taking nonholonomic constrains is 
given by: 

where q = [z ] is the state vector: [x ] represents the 
Cartesian coordinates of the guide point, 0 is the orientation 
of the robot body with respect to the x-axis, 4 is the steering 
angle; 1 is the distance between the two wheel-axle centers, 
D is the radius of back driving wheel; U ,  is the angular 

+IC 3(0) 2(4)v2. (15) 

Based on the main results of [5] ,  we give our patrolling 
control algorithm as follows: 

Considering every adjacent pair of points in P,  take the 
robot configuration at the points as boundary conditions 

+o = +f = 0. If satisfying the condition that 20- 5 s 00 # 

path can be generated analytically by undertaking following 
steps: 

) of the working space such 
that 0 # I. apply state and input transformations 
(14) and (15), determine the corresponding boundary 
conditions to = [ty, 4, #> 41, f = [tf, d ,  d ,  41, 
and obtain the dynamics in the chained form (13). 

(ii) Let Ti be the time for the mobile robot to complete 
its maneuver between the adjacent pair of points, and 
Tj be the sampling period such that k = Tj/Tj is 
an integer, that the centers of objects Oi are located 
at (xt, $) at t = to + k 9 .  and that these objects 
are all moving with known constant velocities U: 5 
[w: U: I T f o r t ~ [ t 3 0 + k  - j , g + ( l i + l ) T j ) . T h e n ,  
for k = 0 , .  , IC - 1, determine recursively constants 
a; by ensuring the following second-order inequality 
(or inequalities): V i  E {I , .  

qo = [xo, m, 6 ,  hlT and qf = [xi, w, 6, PI' with 

x f  - z s  1 O f ,  and that 100 - O f /  < T ,  a collision-free 

(i) Select coordinates (x 

, Q} 

- - 
velocity of the driving wheel, and is the steering rate of 
front guiding wheel. The range of 4 is limited to be within 

and ' is within (-;, 4) to 
ensure an one-to-one map of the coordinate transformation. 

k 
X: E [tl(t)-$ ~-vi-R,  q(t)--vi .r+o.Sl+~i+R]. 

*If the interval d w s  not exist for some or all i ,  inequality (16) is not 9) due to 
needed for those objects. 
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In (16). functions t i ( t ) ,  g2(.). 

defined as follows: 
and go,,(.) are (iv) The steering inputs to achieve path (18) are given by, 

for t E (6 + k j ,  6 + ( k  + 1)TI], 

yk = 

Bk = 

(iii) 

r - (.z:)6 - First, we place a minimum-area rectangle that encases the 
boundary of the set. Second, minimum number of circles of 
the radius of coverage range are placed to completely cover 

Yf-4s  e,) (z:)6 ' the rectangle. Third, a patrolling path is searched along the 
t e / )  6(2? boundary of the set in a spital. Feasible trajectories are 

then designed to account for the nonholonomic kinematics 
of the robot and the dynamic obstacles detected by the "," (";)' (2')3 (21k)4  ("'r.j robot onboard sensors. Since analytic solutions are given 

6z: lz (z lk )z  zo(z,)3 in generating feasible trajectories, the algorithm can be 
implemented in real time. Future work exists to refine the 

zf (z f )4  (zi)5 design in the last step and to enable performance evaluation. 

k 
"4 

4 6(z:)5 
~ O ( Z ? ) ~  

25 , A!= 

0 . 3 0 ( ~ [ ) ~  - - 
0 1 22, 3(a:)2 4(z:)3 5 ( t 1 )  
0 0  2 

0 1 z*,f 3("f)2 4(4)3 5(zf)4 
- 0  0 2 6 4  lZ(zf)' Z O ( Z [ ) ~  REFERENCES 

k-1 

y," = yp +Tj It( , if k 0; 
j=O 

vz ( t )  
+24[a: + 5agzt + 15ag(~:)~](t - $ - k :)U: 

+60(ak + 6ai.z:) t - ti - k a)'.: 
a$ + 4a,kz: + 10a;(z:)' + ZO~$(Z:)~]W~ 

+120ai(t - - k 3 3 4 .  (20) 

(v) The corresponding feasible, collision-free Cartesian 

2 

~ 4 1  
go,i(zl(t), k ) [ f ( z l ( t )  Bk)-'Yk - Y," -U," T ]  

+(zi(t)-z:-vf T ) ' -  ( r i+R+0.51) ' .  

A feasible, collision-free path in the transformed state 
has the form 

zq(z1) F(z,)  a k f ( z l )  (18) 

[51 

where ak is solved according to I61 

at = [ a," a t  af a i  a i  a; a," 1 ,  171 
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